题目内容

平面内有n(n≥2)条直线,任何两条都不平行,任何三条不过同一点,问交点的个数f(n)为多少?并证明.
考点:归纳推理
专题:综合题,推理和证明
分析:由于第n+1条直线与前面n条直线都有交点,从而可知n条共面直线交点个数与n条共面直线交点个数的关系,利用叠加法,即可得出结论.
解答: 解:对于n条共面直线,任取其中1条直线,记为l,则除l外的其他n条直线的交点的个数为f(n),
因为已知任何两条直线不平行,所以直线l必与平面内其他n条直线都相交(有n个交点);
又因为已知任何三条直线不过同一点,所以上面的n个交点两两不相同,
且与平面内其他的f(n)个交点也两两不相同,从而平面内交点的个数是f(n)+n
n(n-1)
2
=f(n+1).
则f(n+1)-f(n)=n.
所以f(n)=f(2)+2+3+…+(n-1)=
n(n-1)
2
点评:所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网