题目内容

已知函数f(x)=
2-2-x,x≤0
|lgx|,x>0
,则方程f(2x2+x)=a(a>0)的根的个数不可能为(  )
A、3B、4C、5D、6
考点:根的存在性及根的个数判断
专题:计算题,作图题,函数的性质及应用
分析:由题意化简f(2x2+x)=
2-2-(2x2+x),-
1
2
≤x≤0
|lg(2x2+x)|,x>0或x<-
1
2
;作图象求解.
解答: 解:f(2x2+x)=
2-2-(2x2+x),-
1
2
≤x≤0
|lg(2x2+x)|,x>0或x<-
1
2

作其图象如下,

故方程f(2x2+x)=a(a>0)的根的个数可能为4,5,6;
故选A.
点评:本题考查了函数的图象的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网