题目内容

10.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3$\sqrt{15}$,b-c=2,cos A=-$\frac{1}{4}$,则a的值为(  )
A.4B.2C.$\sqrt{3}$D.8

分析 cos A=-$\frac{1}{4}$,可得sinA=$\sqrt{1-co{s}^{2}A}$.由$\frac{1}{2}$bcsinA=$\frac{1}{2}bc×\frac{\sqrt{15}}{4}$=$3\sqrt{15}$,b-c=2,解得b,c.再利用余弦定理即可得出.

解答 解:∵cos A=-$\frac{1}{4}$,∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{15}}{4}$.
∵$\frac{1}{2}$bcsinA=$\frac{1}{2}bc×\frac{\sqrt{15}}{4}$=$3\sqrt{15}$,b-c=2,解得b=6,c=4.
∴a2=b2+c2-2bccos A=62+42-2×$6×4×(-\frac{1}{4})$=64,
解得a=8.
故选:D.

点评 本题考查了三角形面积计算公式、余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网