题目内容

已知f(x)=
-1
2
+
sin
5x
2
2sin
x
2
,x∈(0,π)
(1)将f(x)表示成cosx的多项式
(2)求f(x)的最小值.
考点:三角函数中的恒等变换应用,三角函数的最值
专题:三角函数的求值,三角函数的图像与性质
分析:(1)由
5x
2
=
x
2
+2x
,用两角和的正弦公式将sin
5x
2
展开,再由倍角公式可化简为f(x)=2cos2x+cosx-1,从而得解.
(2)配方可得f(x)=2cos2x+cosx-1=2(cos+
1
4
2-
9
8
,根据正弦函数的性质可求f(x)的最小值.
解答: 解:(1)f(x)=-
1
2
+
sin
x
2
cos2x+4cos2
x
2
sin
x
2
cosx
2sin
x
2

=-
1
2
+
2cos2x-1
2
+2cos2
x
2
cosx
=-
1
2
+
2cos2x-1
2
+(2cos2
x
2
-1)cosx+cosx
=cos2x-1+cos2x+cosx
=2cos2x+cosx-1
(2)∵f(x)=2cos2x+cosx-1=2(cos+
1
4
2-
9
8

∴f(x)的最小值-
9
8
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的最值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网