题目内容
已知定义域为R的函数f(x)=Asin(ωx+φ)(A>0,ω>0)的一段图象如图所示.
(1)求f(x)的解析式;
(2)若g(x)=cos3x,h(x)=f(x)•g(x),求函数h(x)的单调递增区间.

(1)求f(x)的解析式;
(2)若g(x)=cos3x,h(x)=f(x)•g(x),求函数h(x)的单调递增区间.
(1)∵T=(
-
)=
,
∴ω=
=3,
∴f(x)=2sin(3x+φ).
∵点(
,2)在图象上,
∴2sin(3×
+φ)=2,即sin(φ+
)=1,
∴φ+
=2kπ+
(k∈Z),即φ=2kπ+
.
故f(x)=2sin(3x+
).(6分)
(2)h(x)=2sin(3x+
)cos3x
=2(sin3xcos
+cos3xsin
)cos3x
=
(six3xcos3x+cos23x)
=
(sin6x+cos6x+1)
=sin(6x+
)+
.
由2kπ-
≤6x+
≤2kπ+
(k∈Z)得函数h(x)的单调递增区间为[
-
,
+
](k∈Z).(12分)
| π |
| 4 |
| π |
| 12 |
| 2π |
| 3 |
∴ω=
| 2π |
| T |
∴f(x)=2sin(3x+φ).
∵点(
| π |
| 12 |
∴2sin(3×
| π |
| 12 |
| π |
| 4 |
∴φ+
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
故f(x)=2sin(3x+
| π |
| 4 |
(2)h(x)=2sin(3x+
| π |
| 4 |
=2(sin3xcos
| π |
| 4 |
| π |
| 4 |
=
| 2 |
=
| ||
| 2 |
=sin(6x+
| π |
| 4 |
| ||
| 2 |
由2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| kπ |
| 3 |
| π |
| 8 |
| kπ |
| 3 |
| π |
| 24 |
练习册系列答案
相关题目