题目内容
已知向量
=(3,1),
=(x,-3),若
⊥
,则x= .
| a |
| b |
| a |
| b |
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量垂直的条件:数量积为0,计算即可得到x.
解答:
解:由
=(3,1),
=(x,-3),
若
⊥
,则
•
=0,
即为3x-3=0,
解得,x=1.
故答案为:1
| a |
| b |
若
| a |
| b |
| a |
| b |
即为3x-3=0,
解得,x=1.
故答案为:1
点评:本题考查平面向量的定义和性质,考查向量垂直的条件,考查运算能力,属于基础题.
练习册系列答案
相关题目
若数列{an}满足:a1=1,an+1=2an(n∈N*),则a5=( )
| A、8 | B、16 | C、32 | D、9 |
设方程ex=|ln(-x)|(其中e为自然对数的底数)的两个根分别为x1,x2,则( )
| A、x1x2<0 |
| B、x1x2=0 |
| C、x1x2>0 |
| D、0<x1x2<1 |