题目内容
11.1785与840的最大约数为105.分析 用辗转相除法求840与1785的最大公约数,写出1785=840×2+105,840=105×8+0,得到两个数字的最大公约数.
解答 解:1785=840×2+105,840=105×8+0.
∴840与1785的最大公约数是105.
故答案为105
点评 本题考查辗转相除法,这是算法案例中的一种题目,是一个基础题.
练习册系列答案
相关题目
1.函数y=x2+1的值域是( )
| A. | [0,+∞) | B. | [1,+∞) | C. | (0,+∞) | D. | (1,+∞) |
2.
如图,OABC是矩形,B在抛物线y=x2上,A为(1,0),现从OABC内任取一点,则该点来自阴影部分的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
6.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2,当x=-2时,v1的值为( )
| A. | 1 | B. | 7 | C. | -7 | D. | -5 |
20.对于函数f(x)=ex-x在区间[1,2]上的最值,下列描述正确的是( )
| A. | 最小值为e-1,没有最大值 | B. | 最大值为e2-2,没有最小值 | ||
| C. | 既没有最大值,也没有最小值 | D. | 最小值为e-1,最大值为e2-2 |