题目内容
20.| A. | 向左平移$\frac{2π}{3}$个单位长度 | B. | 向左平移$\frac{π}{3}$个单位长度 | ||
| C. | 向右平移$\frac{2π}{3}$个单位长度 | D. | 向右平移$\frac{π}{3}$个单位长度 |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由$(\frac{π}{3},2)$在函数图象上,结合φ的范围求出φ的值,可得函数的解析式.再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:A=2,
∵$\frac{T}{2}=\frac{π}{3}-(-\frac{π}{6})=\frac{π}{2}$,
∴T=π=$\frac{2π}{ω}$,解得:ω=2,可得:f(x)=2cos(2x+φ),
将$(\frac{π}{3},2)$代入得:$cos(\frac{2π}{3}+φ)=1$,
∵-π<φ<0,
∴$φ=-\frac{2π}{3},f(x)=2cos(2x-\frac{2π}{3})=2cos2(x-\frac{π}{3})$,
故可将函数y=f(x)的图象向左平移$\frac{π}{3}$个单位长度得到l的图象.
故选:B.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
10.函数f(x)=ax3+(a-1)x2-x+2(0≤x≤1)在x=1处取得最小值,则实数a的取值范围是( )
| A. | a≤0 | B. | 0$≤a≤\frac{3}{5}$ | C. | a≤$\frac{3}{5}$ | D. | a≤1 |
11.函数f(x)=sinωx(ω>0),对任意实数x有$f(x-\frac{1}{2})=f(x+\frac{1}{2})$,且$f(-\frac{1}{4})=a$,那么$f(\frac{9}{4})$=( )
| A. | a | B. | $-\frac{1}{4}a$ | C. | $\frac{1}{4}a$ | D. | -a |
5.已知函数f(x)=sin(2x+$\frac{π}{6}$),如果x1、x2∈(-$\frac{π}{12}$,$\frac{5π}{12}$),且满足x1≠x2,f(x1)=f(x2),则f(x1+x2)=( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -1 |
6.若函数f(x)满足f(x)=x(f′(x)-lnx),且f($\frac{1}{e}$)=$\frac{1}{e}$,则ef(ex)<f′($\frac{1}{e}$)+1的解集是( )
| A. | (-∞,-1) | B. | (-1,+∞) | C. | (0,$\frac{1}{e}$) | D. | ($\frac{1}{e}$,+∞) |