ÌâÄ¿ÄÚÈÝ
6£®£¨1£©ÇónµÄÖµ£»
£¨2£©¹æ¶¨Ã¿´Î´ÓÖв»·Å»ØµØ³éȡһÕÅ¿¨Æ¬£¬Èô³éÈ¡µ½Ó¡ÓС°Î¬ÄáÐÞ˹£¨Vinicius£©¡±»òÕßÓ¡ÓС°ÌÀÄ·£¨Tom£©¡±Í¼°¸µÄ¿¨Æ¬£¬Ôò½áÊø³é½±£¬ÓÃËæ»ú±äÁ¿¦Î±íʾ³é½±´ÎÊý£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨¦Î£©£®
·ÖÎö £¨1£©ÓÉÒÑÖª£¬µÃn2-6n+9=0£¬ÓÉ´ËÄÜÇó³ön£®
£¨2£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®
½â´ð ½â£º£¨1£©¡ß8ÕÅ¿¨Æ¬£¬ÆäÖÐ2ÕÅÓ¡ÓС°Î¬ÄáÐÞ˹£¨Vinicius£©¡±Í¼°¸£¬n£¨2¡Ün¡Ü4£©ÕÅÓ¡ÓС°ÌÀÄ·£¨Tom£©¡±Í¼°¸£¬
ÆäÓ࿨ƬÉÏÓ¡ÓС°2016ÄêÀïÔ¼°ÂÔ˻ᡱµÄͼ°¸£¬´Ó³é½±ÏäÖÐÈÎÒâ³éÈ¡Á½ÕÅ¿¨Æ¬£¬Á½ÕÅ¿¨Æ¬Í¼°¸ÏàͬµÄ¸ÅÂÊÊÇ$\frac{1}{4}$£¬
¡à$\frac{{C}_{2}^{2}+{C}_{n}^{2}+{C}_{8-2-n}^{2}}{{C}_{8}^{2}}$=$\frac{1}{4}$£¬
ÕûÀí£¬µÃn2-6n+9=0£¬
½âµÃn=3£®
£¨2£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬4£¬
P£¨¦Î=1£©=$\frac{5}{8}$£¬
P£¨¦Î=2£©=$\frac{3}{8}¡Á\frac{5}{7}=\frac{15}{56}$£¬
P£¨¦Î=3£©=$\frac{3}{8}¡Á\frac{2}{7}¡Á\frac{5}{6}$=$\frac{5}{56}$£¬
P£¨¦Î=4£©=$\frac{3}{8}¡Á\frac{2}{7}¡Á\frac{1}{6}¡Á\frac{5}{5}$=$\frac{1}{56}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 1 | 2 | 3 | 4 |
| P | $\frac{5}{8}$ | $\frac{15}{56}$ | $\frac{5}{56}$ | $\frac{1}{56}$ |
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏ໥¶ÀÁ¢µÄ¸ÅÂʳ˷¨¹«Ê½µÄºÏÀíÔËÓã®
| A£® | $\frac{7\sqrt{2}}{10}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{\sqrt{2}}{10}$ | D£® | $\frac{7}{10}$ |