题目内容
已知数列{an}的前n项和为Sn,且2Sn=1-an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,cn=
,求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 | ||
log
|
| ||||
|
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知得a1=
.当n≥2时,2Sn=1-an,2Sn-1=1-an-1,两式相减,能推导出an=
(n∈N*).
(Ⅱ)由bn=
=
=
.得cn=
=
-
.由此能求出数列{cn}的前n项和Tn.
| 1 |
| 3 |
| 1 |
| 3n |
(Ⅱ)由bn=
| 1 | ||
log
|
| 1 | ||||
log
|
| 1 |
| n |
| ||||
|
| 1 | ||
|
| 1 | ||
|
解答:
解:(Ⅰ)当n=1时,由2S1=1-a1得:a1=
.
当n≥2时,2Sn=1-an①;2Sn-1=1-an-1②,
上面两式相减,得:an=
an-1.
所以数列{an}是以首项为
,公比为
的等比数列.
∴an=
(n∈N*).…(6分)
(Ⅱ)bn=
=
=
.
cn=
=
-
. …(10分)
∴Tn=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
.(12分)
| 1 |
| 3 |
当n≥2时,2Sn=1-an①;2Sn-1=1-an-1②,
上面两式相减,得:an=
| 1 |
| 3 |
所以数列{an}是以首项为
| 1 |
| 3 |
| 1 |
| 3 |
∴an=
| 1 |
| 3n |
(Ⅱ)bn=
| 1 | ||
log
|
| 1 | ||||
log
|
| 1 |
| n |
cn=
| ||||
|
| 1 | ||
|
| 1 | ||
|
∴Tn=(1-
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
=1-
| 1 | ||
|
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目