题目内容
用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,该长方体的最大体积是________.
3m3
等比数列{an}中,a1=2,a8=4,f(x)=x(x-a1)(x-a2)…(x-a8),f ′(x)为函数f(x)的导函数,则f ′(0)=( )
A.0 B.26
C.29 D.212
已知实数a、b、c、d成等比数列,且曲线y=3x-x3的极大值点坐标为(b,c),则ad等于( )
A.2 B.1
C.-1 D.-2
已知函数f(x)的导函数为f ′(x)=5+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为________.
内接于半径为R的球并且体积最大的圆锥的高为( )
A.R B.2R
C.R D.R
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为t元(t为常数,且2≤t≤5),设该食品厂每公斤蘑菇的出厂价为x元(25≤x≤40),根据市场调查,日销售量q与ex成反比,当每公斤蘑菇的出厂价为30元时,销售量为100kg.(每日利润=日销售量×(每公斤出厂价-成本价-加工费)).
(1)求该工厂的每日利润y元与每公斤蘑菇的出厂价x元的函数关系式;
(2)若t=5,当每公斤蘑菇的出厂价x为多少元时,该工厂的利润y最大,并求最大值.
已知球的直径为d,求当其内接正四棱柱体积最大时,正四棱柱的高为多少?
已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,求a的值.
已知椭圆的离心率为,焦点是(-3,0)和(3,0),则椭圆方程为( )
(A) (B)
(C) (D)