题目内容
12.已知cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),α-β∈($\frac{3π}{4}$,π),求cos2α的值.分析 由已知利用同角三角函数基本关系式可求sin(α+β),sin(α-β)的值,利用两角和的余弦函数公式即可计算求值得解.
解答 解:∵cos(α+β)=$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),
可得:sin(α+β)=-$\sqrt{1-co{s}^{2}(α+β)}$=-$\frac{3}{5}$.
cos(α-β)=-$\frac{4}{5}$,α-β∈($\frac{3π}{4}$,π),
可得:sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{3}{5}$.
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)
=$\frac{4}{5}$×(-$\frac{4}{5}$)-(-$\frac{3}{5}$)×$\frac{3}{5}$=-$\frac{7}{25}$.
点评 本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于中档题.
练习册系列答案
相关题目
1.已知某一随机变量ξ的概率分布如下,且E(ξ)=6.3,则a的值为7.
| ξ | 4 | a | 9 |
| P | 0.5 | 0.1 | b |