题目内容
2.已知函数f(x)=lg($\frac{1}{x}$-1),x∈(0,$\frac{1}{2}$),若x1,x2∈(0,$\frac{1}{2}$)且x1≠x2,求证:$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}+{x}_{2}}{2}$).分析 代入函数解析式,使用作差法证明.
解答 解:假设0<x1<x2$<\frac{1}{2}$,
f(x1)+f(x2)-2f($\frac{{x}_{1}+{x}_{2}}{2}$)=lg($\frac{1}{{x}_{1}}$-1)+lg($\frac{1}{{x}_{2}}$-1)-lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2
=lg($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2.
($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-($\frac{2}{{x}_{1}+{x}_{2}}-1$)2=$\frac{({x}_{1}-{x}_{2})^{2}(1-{x}_{1}-{x}_{2})}{{x}_{1}{x}_{2}({x}_{1}+{x}_{2})^{2}}$.
∵0<x1<x2$<\frac{1}{2}$,∴1-x1-x2>0,∴($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-($\frac{2}{{x}_{1}+{x}_{2}}-1$)2>0,
∴($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)>($\frac{2}{{x}_{1}+{x}_{2}}-1$)2>0,
∴lg($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)>lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2.
即lg($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2>0,
∴f(x1)+f(x2)-2f($\frac{{x}_{1}+{x}_{2}}{2}$)>0,
∴$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}+{x}_{2}}{2}$).
点评 本题考查了不等式的证明,使用作差法证明是证明不等式的常用方法.
| A. | (1,3) | B. | (3,-1) | C. | (1,-3) | D. | (-1,3) |
| A. | 32 | B. | 64 | C. | 128 | D. | 256 |
| A. | $\frac{\sqrt{3}-\sqrt{2}}{6}$ | B. | -$\frac{\sqrt{2}}{3}$-$\frac{1}{6}$ | C. | $\frac{1}{2}$-$\frac{\sqrt{3}}{6}$ | D. | -$\frac{\sqrt{6}}{3}$-$\frac{1}{6}$ |