题目内容

设函数f(x)=ax+b,其中a,b是实数,f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…若f7(x)=128x+381,则a+b=
 
考点:函数的值
专题:函数的性质及应用
分析:由已知条件推导出f7(x)=a7x+b(a6+a5+a4+a3+a2+a+1)=128x+381,由此能求出a+b.
解答: 解:∵f(x)=ax+b,
∴f2(x)=f[f(x)]=a(ax+b)+b=a2x+b(a+1),
f3(x)=f[f2(x)]=a[a2x+b(a+1)]+b=a3x+ab(a+1)+b=a3x+b(a2+a+1)
f4(x)=f[f3(x)]=a[a3x+b(a2+a+1)]+b=a4x+b(a3+a2+a+1)

f7(x)=a7x+b(a6+a5+a4+a3+a2+a+1)=128x+381,
从而a7=128,(1+a+a2+…+a6)b=381
解得a=2,b=3,
∴a+b=5.
故答案为:5.
点评:本题考查函数值的求法,是中档题,解题时要认真审题,注意递推思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网