ÌâÄ¿ÄÚÈÝ
17£®ÔÚ¶ÔÈËÃǵÄÐÝÏз½Ê½µÄÒ»´Îµ÷²éÖУ¬¹²µ÷²é ÁË100ÈË£¬ÆäÖÐÅ®ÐÔ55ÈË£¬ÄÐÐÔ45ÈË£®Å®ÐÔÖÐÓÐ40ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÁíÍâ15ÈËÖ÷ÒªµÄÐÝÏз½Ê½ÊÇÔ˶¯£»ÄÐÐÔÖÐÓÐ20ÈËÖ÷ÒªÐÝÏз½Ê½ÊÇ¿´µçÊÓ£¬ÁíÍâ25ÈËÖ÷ÒªÐÝÏз½Ê½ÊÇÔ˶¯£®£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý½¨Á¢Ò»¸ö2¡Á2µÄÁÐÁª±í£®
£¨2£©ÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪÐÔ±ðÓëÐÝÏз½Ê½ÓйØÏµ£¿${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
| p£¨k2¡Ýk0£© | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
·ÖÎö £¨1£©ÓÉËù¸øµÄÊý¾ÝÌîдÁÐÁª±í£»
£¨2£©¼ÆËãK2µÄ¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµ¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÓÉËù¸øµÄÊý¾ÝµÃµ½ÁÐÁª±í£¬
| ÐÝÏз½Ê½ ÐÔ±ð | ¿´µçÊÓ | Ô˶¯ | ºÏ¼Æ |
| Å® | 43 | 27 | 70 |
| ÄÐ | 21 | 33 | 54 |
| ºÏ¼Æ | 64 | 60 | 124 |
$\frac{124{¡Á£¨43¡Á33-27¡Á21£©}^{2}}{70¡Á54¡Á64¡Á60}$¡Ö6.201£¼6.635£»
¡ßP£¨K2£¼6.635£©=0.01£¬
¡àûÓÐ99%µÄ°ÑÎÕÈÏΪÐÔ±ðÓëÐÝÏз½Ê½ÓйØÏµ£®
µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®
ÇØ¾ÅÉØÊÇÎÒ¹úÄÏËÎʱ´úµÄÊýѧ¼Ò£¬Æä´ú±í×÷¡¶ÊýÊé¾ÅÕ¡·ÊÇÎÒ¹ú13ÊÀ¼ÍÊýѧ³É¾ÍµÄ´ú±íÖ®Ò»£»ÈçͼÊÇÇØ¾ÅÉØËã·¨µÄÒ»¸ö³ÌÐò¿òͼ£¬ÔòÊä³öµÄSΪ£¨¡¡¡¡£©
| A£® | a1+x0£¨a3+x0£¨a0+a2x0£©£©µÄÖµ | B£® | a3+x0£¨a2+x0£¨a1+a0x0£©£©µÄÖµ | ||
| C£® | a0+x0£¨a1+x0£¨a2+a3x0£©£©µÄÖµ | D£® | a2+x0£¨a0+x0£¨a3+a1x0£©£©µÄÖµ |
8£®ÒÑÖªº¯Êýf£¨x£©=$\frac{4}{3}$x3-2kx2-x+1ÓÐÁ½¸ö²»Í¬µÄ¼«Öµµãx1£¬x2£¨x1£¼1£¼x2£©£¬Èôg£¨x£©=$\frac{2x-k}{{x}^{2}+1}$£¬ÇÒx¡Ê[1£¬x2]ʱ£¬g£¨x£©¡Ý$\frac{k}{2}$ºã³ÉÁ¢£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨$\frac{3}{4}$£¬+¡Þ£© | B£® | [1£¬+¡Þ£© | C£® | £¨$\frac{3}{4}$£¬1] | D£® | {1} |
2£®ÒÑÖªÃüÌâp£º1¡Ê{x|x2-2x+1¡Ü0}£¬ÃüÌâq£º?x¡Ê[0£¬1]£¬x2-1¡Ý0£¬ÔòÏÂÁÐÃüÌâÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A£® | p¡Äq | B£® | ©Vp¡Ä£¨©Vq£© | C£® | p¡Åq | D£® | ©Vp¡Åq |
13£®²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=t}\\{y=1+t}\end{array}\right.$£¨tΪ²ÎÊý£©±íʾÇúÏßÊÇ£¨¡¡¡¡£©
| A£® | Ò»ÌõÉäÏß | B£® | Á½ÌõÉäÏß | C£® | Ò»ÌõÖ±Ïß | D£® | Á½ÌõÖ±Ïß |