题目内容
宇宙深处有一颗美丽的行星,这个行星是一个半径为r(r>0)的球。人们在行星表面建立了与地球表面同样的经纬度系统。已知行星表面上的A点落在北纬60°,东经30°;B点落在东经30°的赤道上;C点落在北纬60°,东经90°。在赤道上有点P满足PB两点间的球面距离等于AB两点间的球面距离。
(1)求AC两点间的球面距离;
(2)求P点的经度;
(3)求AP两点间的球面距离。
解:设球心为O,北纬60°圈所对应的圆心为O’,
(1)那么OO’=
。O’A=O’C=
。又因为∠AO’C=60°。
所以AC=
。那么∠AOC=
(
)
两点间的球面距离为
(
)
(2)PB两点间的球面距离等于AB两点间的球面距离,所以PB=AB。
可知∠POB=∠AOB=60°,又P点在赤道上。所以P点的经度为东经90°或西经30°。
(3)显然P点的两种可能对应的AP间的球面距离相等。不妨P所在的经度为东经90°。
由条件可知O’A平行OB且等于OB的一半,延长BA与OO’交于D点,那么
。而O’C平行OP且等于OP的一半,所以D、P、C共线且
。
可知AC∥BP,所以A、B、C、P共面。
![]()
练习册系列答案
相关题目