题目内容

8.已知抛物线y2=2px(p>0),过点T(p,0)且斜率为1的直线与抛物线交于A,B两点,则直线OA,OB的斜率之积为(O为坐标原点)-2.

分析 求出AB的方程,联立直线与抛物线方程,设出AB坐标,然后求解直线的斜率乘积,推出结果.

解答 解:依题意过点T(p,0)且斜率为1的直线与抛物线交于A,B两点,直线AB:y=x-p,
联立$\left\{\begin{array}{l}{y=x-p}\\{{y}^{2}=2px}\end{array}\right.$,消去x得:y2-2py-2p2=0,
设A($\frac{{{y}_{1}}^{2}}{2p}$,y1),B($\frac{{{y}_{2}}^{2}}{2p}$,y2),则有y1y2=-2p2
∴kOA•kOB=$\frac{{y}_{1}}{\frac{{{y}_{1}}^{2}}{2p}}•\frac{{y}_{2}}{\frac{{{y}_{2}}^{2}}{2p}}$=$\frac{4{p}^{2}}{{y}_{1}{y}_{2}}$=-2.
故答案为:-2.

点评 本题考查直线与抛物线的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网