题目内容
5.已知点P是锐角△ABC所在平面内的动点,且满足$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,给出下列四个命题:①点P的轨迹是一条直线;
②$|\overrightarrow{CP}|=|\overrightarrow{CA}|$恒成立;
③$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④存在点P使得$|\overrightarrow{PC}+\overrightarrow{PB}|=|\overrightarrow{CB}|$.
则其中真命题的序号为( )
| A. | ①② | B. | ③④ | C. | ①②④ | D. | ①③④ |
分析 ①由$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,得$\overrightarrow{CB}$⊥$\overrightarrow{AP}$,点P的轨迹是CB边的高线所在的直线;
②由$\overrightarrow{CP}$•$\overrightarrow{CB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,得|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,$|\overrightarrow{CP}|=|\overrightarrow{CA}|$不一定成立;
由cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>≤1,|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,得$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④$\overrightarrow{PC}$⊥$\overrightarrow{PB}$时,以PC、PB为邻边所作的平行四边形是矩形,得|$\overrightarrow{PC}$+$\overrightarrow{PB}$|=|$\overrightarrow{CB}$|正确.
解答 解:对于①,由$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,得$\overrightarrow{CB}$•($\overrightarrow{CP}$-$\overrightarrow{CA}$)=0,
∴$\overrightarrow{CB}$•$\overrightarrow{AP}$=0,∴$\overrightarrow{CB}$⊥$\overrightarrow{AP}$,
∴点P的轨迹是CB边的高线所在的直线,①正确;
对于②,由$\overrightarrow{CP}$•$\overrightarrow{CB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,
得|$\overrightarrow{CP}$|×|$\overrightarrow{CB}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|×|$\overrightarrow{CB}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,
即|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,
∴$|\overrightarrow{CP}|=|\overrightarrow{CA}|$不一定成立,②错误;
对于③,由cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>≤1,|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,
得$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$,③正确;
对于④,当$\overrightarrow{PC}$⊥$\overrightarrow{PB}$时,以PC、PB为邻边所作的平行四边形是矩形,
因此存在点P使|$\overrightarrow{PC}$+$\overrightarrow{PB}$|=|$\overrightarrow{CB}$|,④正确.
综上,其中真命题的序号为①③④.
故选:D.
点评 本题考查了向量垂直与数量积的关系、向量的平行四边形法则、矩形的对角线的性质等基础知识与基本技能方法,考查了推理能力,是综合性题目.
| A. | y=$\sqrt{3}$(x+4) | B. | y=$\frac{\sqrt{3}}{3}$(x+4) | C. | y=$\frac{\sqrt{2}}{2}$(x+4) | D. | y=$\sqrt{2}$(x+4) |
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 0 | D. | -$\frac{\sqrt{3}}{2}$ |
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
| A. | 3 | B. | 5 | C. | 7 | D. | 8 |
| A. | $\frac{25}{4}$ | B. | $\frac{8}{3}$ | C. | 8 | D. | $\frac{9}{4}$ |