ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ýµãF1µÄÖ±Ïßx-y+$\sqrt{10}$=0ÓëÔ²x2+y2=b2Ïཻ½ØµÃµÄÏÒ³¤Îª2$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÍÖÔ²CÓëÖ±Ïß2x-3y=0ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪP£¬ÓëÖ±ÏßOPƽÐеÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬ÇóÖ¤£º¡ÏAPBµÄƽ·ÖÏßÓëyÖá´¹Ö±£®

·ÖÎö £¨1£©ÓÉÖ±Ïßx-y+$\sqrt{10}$=0£¬¿ÉµÃF1£¨-$\sqrt{10}$£¬0£©£¬ÔËÓÃÔ²µÄÏÒ³¤¹«Ê½¿ÉµÃ2$\sqrt{3}$=2$\sqrt{{b}^{2}-£¨\frac{\sqrt{10}}{\sqrt{2}}£©^{2}}$£¬½â·½³Ì¿ÉµÃb£¬c£¬½ø¶øµÃµ½a£¬¼´ÓÐÍÖÔ²µÄ·½³Ì£»
£¨2£©ÁªÁ¢Ö±Ïß2x-3y=0ºÍÍÖÔ²·½³Ì4x2+9y2=72£¬¿ÉµÃPµÄ×ø±ê£¬ÔÙÓÉÖ±ÏßOPµÄбÂÊÉè³öÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬Ö¤µÃkPA+kPB=0¼´¿É£®

½â´ð ½â£º£¨1£©µãF1ÔÚÖ±Ïßx-y+$\sqrt{10}$=0ÉÏ£¬¿ÉµÃF1£¨-$\sqrt{10}$£¬0£©£¬
ÓÉÔ²µÄÏÒ³¤¹«Ê½¿ÉµÃ2$\sqrt{3}$=2$\sqrt{{b}^{2}-£¨\frac{\sqrt{10}}{\sqrt{2}}£©^{2}}$£¬
½âµÃb=2$\sqrt{2}$£¬c=$\sqrt{10}$£¬a=$\sqrt{{b}^{2}+{c}^{2}}$=3$\sqrt{2}$£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{8}$=1£»
£¨2£©Ö¤Ã÷£ºÖ±Ïß2x-3y=0´úÈëÍÖÔ²·½³Ì4x2+9y2=72£¬
¿ÉµÃx=3£¬y=2£¨¸ºµÄÉáÈ¥£©£¬¼´P£¨3£¬2£©£¬
Ö±ÏßOPµÄбÂÊΪ$\frac{2}{3}$£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=$\frac{2}{3}$x+t£¬
¿ÉµÃ8x2+12tx+9t2-72=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃx1+x2=-$\frac{12t}{8}$£¬x1x2=$\frac{9{t}^{2}-72}{8}$£¬
ÓÉkPA+kPB=$\frac{{y}_{1}-2}{{x}_{1}-3}$+$\frac{{y}_{2}-2}{{x}_{2}-3}$=$\frac{\frac{2}{3}{x}_{1}+t-2}{{x}_{1}-3}$+$\frac{\frac{2}{3}{x}_{2}+t-2}{{x}_{2}-3}$
=$\frac{4}{3}$+t£¨$\frac{1}{{x}_{1}-3}$+$\frac{1}{{x}_{2}-3}$£©=$\frac{4}{3}$+t•$\frac{{x}_{1}+{x}_{2}-6}{{x}_{1}{x}_{2}+9-3£¨{x}_{1}+{x}_{2}£©}$
=$\frac{4}{3}$+t•$\frac{-12t-48}{9{t}^{2}-72+72+36t}$=0£¬
¿ÉµÃ¡ÏAPBµÄƽ·ÖÏßÓëyÖá´¹Ö±£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÖ±ÏߺÍÔ²ÏཻµÄÏÒ³¤¹«Ê½£¬¿¼²éÖ±ÏßµÄбÂʵÄÔËÓã¬ÒÔ¼°Ö±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø