题目内容

已知数列{an}各项为正数,前n项和Sn=
1
2
an(an+1)

(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
an
1+2bn
,数列{cn}前n项和为Tn,求证:Tn
3
4
考点:数列与不等式的综合,等差数列的通项公式,数列的求和
专题:综合题
分析:(1)当n=1时,a1=S1=
1
2
a1(a1+1)
,得a1=1.当n≥2时,an=Sn-Sn-1=
1
2
an(an+1)-
1
2
an-1(an-1+1)
,得(an+an-1)(an-an-1-1)=0,由此能求出an=n.
(2)由数列{bn}满足b1=1,bn+1=bn+3an,知bn+1-bn=3an=3n,由此利用累加法能够求出数列{bn}的通项公式.
(3)由cn=
an
1+2bn
=
n
3n
,知Tn=
1
3
+
2
32
+
3
33
+…+
n
3n
,由此利用错位相减法能够求出Tn,进而证明Tn
3
4
解答: 解:(1)当n=1时,a1=S1=
1
2
a1(a1+1)

a12=a1
∵a1>0,∴a1=1.
当n≥2时,an=Sn-Sn-1=
1
2
an(an+1)-
1
2
an-1(an-1+1)

化简,得(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.
(2)∵数列{bn}满足b1=1,bn+1=bn+3an
bn+1-bn=3an=3n
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=1+3+32+…+3n-1
=
1×(1-3n)
1-3

=
1
2
(3n-1)

(3)∵cn=
an
1+2bn
=
n
3n

Tn=
1
3
+
2
32
+
3
33
+…+
n
3n

1
3
Tn=
1
3 2
+
2
3 3
+
3
3 4
+…+
n
3 n+1

Tn-
1
3
Tn=
1
3
+
1
3 2
+
1
3 3
+…+
1
3 n
-
n
3n-1

=
1
3
×(1-
1
3 n
1-
1
3
-
n
3 n-1

=
1
2
-
2n+3
3n+1

Tn=
3
4
-
2n+3
3n
3
4
点评:本题考查数列通项公式的求法和前n项和的证明,解题时要认真审题,注意累加法、裂项求和法的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网