题目内容
已知数列{an}各项为正数,前n项和Sn=
an(an+1)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
,数列{cn}前n项和为Tn,求证:Tn<
.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
| an |
| 1+2bn |
| 3 |
| 4 |
考点:数列与不等式的综合,等差数列的通项公式,数列的求和
专题:综合题
分析:(1)当n=1时,a1=S1=
a1(a1+1),得a1=1.当n≥2时,an=Sn-Sn-1=
an(an+1)-
an-1(an-1+1),得(an+an-1)(an-an-1-1)=0,由此能求出an=n.
(2)由数列{bn}满足b1=1,bn+1=bn+3an,知bn+1-bn=3an=3n,由此利用累加法能够求出数列{bn}的通项公式.
(3)由cn=
=
,知Tn=
+
+
+…+
,由此利用错位相减法能够求出Tn,进而证明Tn<
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)由数列{bn}满足b1=1,bn+1=bn+3an,知bn+1-bn=3an=3n,由此利用累加法能够求出数列{bn}的通项公式.
(3)由cn=
| an |
| 1+2bn |
| n |
| 3n |
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
| 3 |
| 4 |
解答:
解:(1)当n=1时,a1=S1=
a1(a1+1),
∴a12=a1,
∵a1>0,∴a1=1.
当n≥2时,an=Sn-Sn-1=
an(an+1)-
an-1(an-1+1),
化简,得(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.
(2)∵数列{bn}满足b1=1,bn+1=bn+3an,
∴bn+1-bn=3an=3n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+3+32+…+3n-1
=
=
(3n-1).
(3)∵cn=
=
,
∴Tn=
+
+
+…+
,
∴
Tn=
+
+
+…+
,
则Tn-
Tn=
+
+
+…+
-
=
-
=
-
,
∴Tn=
-
<
.
| 1 |
| 2 |
∴a12=a1,
∵a1>0,∴a1=1.
当n≥2时,an=Sn-Sn-1=
| 1 |
| 2 |
| 1 |
| 2 |
化简,得(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.
(2)∵数列{bn}满足b1=1,bn+1=bn+3an,
∴bn+1-bn=3an=3n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+3+32+…+3n-1
=
| 1×(1-3n) |
| 1-3 |
=
| 1 |
| 2 |
(3)∵cn=
| an |
| 1+2bn |
| n |
| 3n |
∴Tn=
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
∴
| 1 |
| 3 |
| 1 |
| 3 2 |
| 2 |
| 3 3 |
| 3 |
| 3 4 |
| n |
| 3 n+1 |
则Tn-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 2 |
| 1 |
| 3 3 |
| 1 |
| 3 n |
| n |
| 3n-1 |
=
| ||||
1-
|
| n |
| 3 n-1 |
=
| 1 |
| 2 |
| 2n+3 |
| 2×3n+1 |
∴Tn=
| 3 |
| 4 |
| 2n+3 |
| 4×3n |
| 3 |
| 4 |
点评:本题考查数列通项公式的求法和前n项和的证明,解题时要认真审题,注意累加法、裂项求和法的灵活运用.
练习册系列答案
相关题目
已知点P1(0,0),P2(1,1),P3(0,
),则在3x+2y-1≤0表示的平面区域内的点是( )
| 1 |
| 3 |
| A、P1,P2 |
| B、P1,P3 |
| C、P2,P3 |
| D、P2 |