题目内容
设函数f(x)=ex(sinx-cosx)(0≤x≤2014π),则函数f(x)的各极小值之和为( )
A、-
| ||
B、-
| ||
C、-
| ||
D、-
|
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:先求出其导函数,利用导函数求出其单调区间,进而找到其极小值f(2kπ+2π)=e2kπ+2π,再利用数列的求和方法来求函数f(x)的各极小值之和即可.
解答:
解:∵函数f(x)=ex(sinx-cosx),
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′
=2exsinx,
∵x∈(2kπ+π,2kπ+2π)时,f′(x)<0,x∈(2kπ+2π,2kπ+3π)时,f′(x)>0,
∴x∈(2kπ+π,2kπ+2π)时原函数递减,x∈(2kπ+2π,2kπ+3π)时,函数f(x)=ex(sinx-cosx)递增,
故当x=2kπ+2π时,f(x)取极小值,
其极小值为f(2kπ+2π)=e2kπ+2π[sin(2kπ+2π)-cos(2kπ+2π)]
=e2kπ+2π×(0-1)
=-e2kπ+2π,
又0≤x≤2014π,
∴函数f(x)的各极小值之和S=-e2π-e4π-e6π-…-e2012π
=
=-
.
故选:D.
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′
=2exsinx,
∵x∈(2kπ+π,2kπ+2π)时,f′(x)<0,x∈(2kπ+2π,2kπ+3π)时,f′(x)>0,
∴x∈(2kπ+π,2kπ+2π)时原函数递减,x∈(2kπ+2π,2kπ+3π)时,函数f(x)=ex(sinx-cosx)递增,
故当x=2kπ+2π时,f(x)取极小值,
其极小值为f(2kπ+2π)=e2kπ+2π[sin(2kπ+2π)-cos(2kπ+2π)]
=e2kπ+2π×(0-1)
=-e2kπ+2π,
又0≤x≤2014π,
∴函数f(x)的各极小值之和S=-e2π-e4π-e6π-…-e2012π
=
| -e2π(1-(e2π)1006) |
| 1-e2π |
=-
| e2π(1-e2012π) |
| 1-e2π |
故选:D.
点评:本题主要考查利用导数研究函数的极值以及等比数列的求和.利用导数求得当x=2kπ+2π时,f(x)取极小值是解题的关键,易错点为在x=0与x=2014π时取不到极小值,利用导数研究函数的单调性与最值是教学中的重点和难点,学生应熟练掌握,属于难题.
练习册系列答案
相关题目
观察下列各式71=7,72=49,73=343,74=2401,75=16807,…,则72014的末尾两位数是( )
| A、01 | B、43 | C、49 | D、07 |
设向量
=(1,0),
=(
,
),则下列结论中正确的是( )
| a |
| b |
| 1 |
| 2 |
| 1 |
| 2 |
A、
| ||||||||
B、|
| ||||||||
C、
| ||||||||
D、
|
从正四面体的六条棱中任取两条,则这两条直线垂直的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
已知正四棱锥P-ABCD的底面边长为2
,高为3,球O是正四棱锥P-ABCD的内切球,则球O的表面积为( )
| 3 |
| A、16π | ||
| B、32π | ||
| C、4π | ||
D、
|
若α,β满足α-β=π,那么下列式子中正确的是( )
| A、sinα=sinβ |
| B、sinα=-sinβ |
| C、cosα=cosβ |
| D、cosα=sinβ |
函数f(x)=x3+2x2-4x+5在[-4,1]上的最大值和最小值分别是( )
A、13,
| ||
| B、4,-11 | ||
| C、13,-11 | ||
| D、13,最小值不确定 |
已知平面α、β、γ,则下列命题中正确的是( )
| A、α⊥β,α∩β=a,a⊥b,则b⊥α |
| B、α⊥β,β⊥γ,则α∥γ |
| C、α∩β=a,β∩γ=b,α⊥β,则a⊥b |
| D、α∥β,β⊥γ,则α⊥γ |