题目内容

9.已知$0<x<\frac{1}{2}$,则函数y=x(1-2x)的最大值是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.没有最大值

分析 变形利用基本不等式的性质即可得出.

解答 解:∵$0<x<\frac{1}{2}$,
∴函数y=x(1-2x)=$\frac{1}{2}$•2x(1-2x)≤$\frac{1}{2}$$(\frac{2x+1-2x}{2})^{2}$=$\frac{1}{8}$.当且仅当x=$\frac{1}{4}$时取等号.
∴函数y=x(1-2x)的最大值是$\frac{1}{8}$.
故选:A.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网