题目内容
18.在△ABC中,内角A、B、C所对的边为a、b、c,且$\sqrt{3}$asinC-c(2+cosA)=0.(1)求角A的大小;
(2)若△ABC的最大边长为$\sqrt{7}$,且sinC=2sinB,求最小边长.
分析 (1)根据正弦定理可得和两角和正弦公式即可求出答案,
(2)根据(1)可以得到a是最边,由sinC=2sinB,可得c=2b,即b是最小边,根据余弦定理即可求出
解答 解:(1)∵$\sqrt{3}$asinC-c(2+cosA)=0,
由正弦定理可得$\sqrt{3}$sinAsinC-sinC(2+cosA)=0,
∵sinC≠0,
∴$\sqrt{3}$sinA-(2+cosA)=0,
即$\sqrt{3}$sinA-cosA=2,
∴sin(A-$\frac{π}{6}$)=1,
∴A-$\frac{π}{6}$=$\frac{π}{2}$
∴A=$\frac{2}{3}$π,
(2)由(1)可知,△ABC的最大边长为为a=$\sqrt{7}$,
∵sinC=2sinB,
∴c=2b,
由余弦定理可得a2=b2+c2-2bccosA,
∴7=b2+4b2-2b•2b•(-$\frac{1}{2}$)=7b2,
∴b=1,
∴最小边长为1.
点评 本题考查了正弦定理和余弦定理以及两角和的正弦公式,考查了学生的运算能力和转化能力,属于中档题
练习册系列答案
相关题目
9.正项等比数列{an}中的a1,a4033是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-3$的极值点,则log6a2017=( )
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | -1 |
6.有以下结论:
①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.
下列说法中正确的是( )
①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.
下列说法中正确的是( )
| A. | ①与②的假设都错误 | B. | ①与②的假设都正确 | ||
| C. | ①的假设正确;②的假设错误 | D. | ①的假设错误;②的假设正确 |
7.函数f(x)=cos2$\frac{x}{2}+\frac{1}{2}$sinx,x∈[0,π],f'(x)为函数f(x)的导函数,则函数y=[f(x)+f'(x)]2的最小值为( )
| A. | 0 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{9}{4}$ |
8.
执行如图程序框图,若输出y=2,则输入的x为( )
| A. | -1或$±\sqrt{2}$ | B. | ±1 | C. | 1或$\sqrt{2}$ | D. | $\sqrt{2}$ |