题目内容

7.函数f(x)=cos2$\frac{x}{2}+\frac{1}{2}$sinx,x∈[0,π],f'(x)为函数f(x)的导函数,则函数y=[f(x)+f'(x)]2的最小值为(  )
A.0B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{9}{4}$

分析 求出f(x)以及f′(x),根据x的范围,求出y=[f(x)+f'(x)]2的最小值即可.

解答 解:f(x)=cos2$\frac{x}{2}+\frac{1}{2}$sinx=$\frac{1}{2}$+$\frac{1}{2}$cosx+$\frac{1}{2}$sinx,
故f′(x)=-$\frac{1}{2}$sinx+$\frac{1}{2}$cosx,
故y=[f(x)+f'(x)]2=(cosx+$\frac{1}{2}$)2
∵x∈[0,π],∴cosx=-$\frac{1}{2}$时,y取到最小值0,
故选:A.

点评 本题考查了导数的应用以及求函数最值问题,考查转化思想,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网