题目内容
17.设a=2-3,b=30.5,c=log25,则a,b,c的大小关系是( )| A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
分析 利用指数函数、对数函数以及幂函数的运算性质分别比较三个数与1和2的大小关系得答案.
解答 解:∵a=2-3<20=1,
1=30<b=30.5<40.5=2,
c=log25>log24=2,
∴a<b<c.
故选:B.
点评 本题考查对数值的大小比较,考查指数函数、对数函数以及幂函数的运算性质,是基础题.
练习册系列答案
相关题目
7.近年来,全国很多地区出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾.是否应该全面禁放烟花爆竹已成为人们议论的一个话题.一般来说,老年人(年满60周岁)从情感上不太支持禁放烟花爆竹,而中青年人(18周岁至60周岁以下)则相对理性一些.某市环保部门就是否赞成禁放烟花爆竹对400位老年人和中青年市民进行了随机问卷调查,结果如下表:
(I)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(Ⅱ)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解它们春节期间在烟花爆竹上消费的情况.假设老年人花费500元左右,中青年人花费1000元左右.用 X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| 赞成禁放 | 不赞成禁放 | 合计 | |
| 老年人 | 60 | 140 | 200 |
| 中青年人 | 80 | 120 | 200 |
| 合计 | 140 | 260 | 400 |
(Ⅱ)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解它们春节期间在烟花爆竹上消费的情况.假设老年人花费500元左右,中青年人花费1000元左右.用 X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(k2>k0) | 0.050 | 0.025 | 0.010 |
| k0 | 3.841 | 5.024 | 6.635 |
5.在n元数集S={a1,a2,…an}中,设X(S)=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$,若S的非空子集A满足X(A)=X(S),则称A是集合S的一个“平均子集”,并记数集S的k元“平均子集”的个数为fs(k),已知集合S={1,2,3,4,5,6,7,8,9},T={-4,-3,-2,-1,0,1,2,3,4},则下列说法错误的是( )
| A. | fs(4)=fs(5) | B. | fs(4)=fT(5) | C. | fs(1)+fs(4)=fT(5)+fT(8) | D. | fs(2)+fs(3)=fT(4) |
2.垂直于直线y=x+1且与圆x2+y2=4相切于第一象限的直线方程是( )
| A. | x+y+2$\sqrt{2}$=0 | B. | x+y+2=0 | C. | x+y-2$\sqrt{2}$=0 | D. | x+y-2=0 |