ÌâÄ¿ÄÚÈÝ
5£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+cos¦Õ\\ y=sin¦Õ\end{array}$£¬£¨¦ÕΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¨1£©ÇóÔ²CµÄÆÕͨ·½³ÌºÍ¼«×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ¼«×ø±ê·½³ÌÊÇ$2¦Ñsin£¨{¦È+\frac{¦Ð}{3}}£©=6\sqrt{3}$£¬ÉäÏßOM£º¦È=$\frac{¦Ð}{6}$ÓëÔ²CµÄ½»µãΪO£¬P£¬ÓëÖ±ÏßlµÄ½»µãΪQ£¬ÇóÏß¶ÎPQµÄ³¤£®
·ÖÎö £¨1£©¸ù¾Ýsin2¦Õ+cos2¦Õ=1ÏûÈ¥Ö±ÏßlµÄ²ÎÊý¿ÉµÃÆÕͨ·½³Ì£»ÓÖx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬¿ÉµÃ¼«×ø±ê·½³Ì£»
£¨2£©ÓÉÌâÒâµÃ$¦È=\frac{¦Ð}{6}$£¬Óɼ«×ø±ê·½³Ì¦Ñ=2cos¦ÈµÃ${¦Ñ_1}=\sqrt{3}$£¬ÓÉÖ±Ïߵļ«×ø±ê·½³Ì$2¦Ñsin£¨{¦È+\frac{¦Ð}{3}}£©=6\sqrt{3}$µÃ${¦Ñ_2}=3\sqrt{3}$
ÀûÓü«×ø±ê·½³Ì¼¸ºÎÒâÒå¿ÉµÃÏß¶ÎPQµÄ³¤£®
½â´ð ½â£º£¨1£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+cos¦Õ\\ y=sin¦Õ\end{array}$£¬£¨¦ÕΪ²ÎÊý£©£¬
Ôòcos¦Õ=x-1£¬sin¦Õ=y£¬
¡ßsin2¦Õ+cos2¦Õ=1£¬¿ÉµÃ£¨x-1£©2+y2=1£¬
¼´Ô²CµÄÆÕͨ·½³ÌΪ£¨x-1£©2+y2=1£¬
ÓÖ¡ßx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬ËùÒÔÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£»
£¨2£©ÓÉÌâÒâµÃ$¦È=\frac{¦Ð}{6}$£¬Óɼ«×ø±ê·½³Ì¦Ñ=2cos¦È£¬µÃ${¦Ñ_1}=\sqrt{3}$£¬
ÓÉÖ±Ïߵļ«×ø±ê·½³Ì$2¦Ñsin£¨{¦È+\frac{¦Ð}{3}}£©=6\sqrt{3}$£¬µÃ${¦Ñ_2}=3\sqrt{3}$
¼«×ø±ê·½³Ì¼¸ºÎÒâÒå¿ÉµÃÏß¶ÎPQµÄ³¤£º$PQ=|{{¦Ñ_1}-{¦Ñ_2}}|=2\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éµãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬ÒÔ¼°ÀûÓÃÆ½Ã漸ºÎ֪ʶ½â¾öÎÊÌ⣮ÀûÓÃÖ±½Ç×ø±êÓë¼«×ø±ê¼äµÄ¹ØÏµ£®
| A£® | $f£¨x£©=\sqrt{3}sin£¨\frac{¦Ð}{2}x+\frac{¦Ð}{3}£©$ | B£® | $f£¨x£©=\sqrt{3}sin£¨\frac{¦Ð}{2}x-\frac{¦Ð}{6}£©$ | ||
| C£® | $f£¨x£©=\sqrt{3}sin£¨\frac{2¦Ð}{3}x+\frac{5¦Ð}{18}£©$ | D£® | $f£¨x£©=\sqrt{3}sin£¨¦Ðx+\frac{¦Ð}{6}£©$ |
| A£® | x2-$\frac{{y}^{2}}{4}$=1 | B£® | x2-$\frac{{y}^{2}}{3}$=1 | C£® | x2-$\frac{{y}^{2}}{5}$=1 | D£® | x2-$\frac{{y}^{2}}{6}$=1 |
| A£® | £¨3£¬+¡Þ£© | B£® | [3£¬+¡Þ£© | C£® | £¨-¡Þ£¬3£© | D£® | £¨-¡Þ£¬3] |
| A£® | 2-ln2 | B£® | 2ln2-$\frac{1}{2}$ | C£® | 2+ln2 | D£® | 2ln2+$\frac{1}{2}$ |
| A£® | {1£¬2£¬3} | B£® | {1£¬3} | C£® | £¨1£¬3] | D£® | £¨1£¬5] |
| A£® | {-1£¬0£¬1} | B£® | {0£¬1} | C£® | [0£¬1] | D£® | [-1£¬1] |
| A£® | $\frac{1}{6}$ | B£® | 1 | C£® | $\frac{2}{3}$ | D£® | $\frac{1}{3}$ |