题目内容
7.用反证法证明命题“设a,b为实数,则方程x3+ax2+b=0至少有一个实根”时,要做的假设是( )| A. | 方程x3+ax2+b=0至多有一个实根 | B. | 方程x3+ax2+b=0没有实根 | ||
| C. | 方程x3+ax2+b=0至多有两个实根 | D. | 方程x3+ax2+b=0恰好有两个实根 |
分析 直接利用命题的否定写出假设即可.
解答 解:反证法证明问题时,反设实际是命题的否定,
∴用反证法证明命题“设a,b为实数,则方程x3+ax2+b=0至少有一个实根”时,要做的假设是:方程x3+ax2+b=0没有实根.
故选:B.
点评 本题考查反证法证明问题的步骤,基本知识的考查.
练习册系列答案
相关题目
15.下面几种推理中是演绎推理的是( )
| A. | 由金、银、铜、铁可导电,猜想:金属都可以导电 | |
| B. | 猜想数列5,7,9,11,…的通项公式为an=2n+3 | |
| C. | 半径为r的圆的面积S=π•r2,则单位圆的面积S=π | |
| D. | 由正三角形的性质得出正四面体的性质 |
16.已知f(x)=|x•ex|,又g(x)=f2(x)+tf(x)(t∈R),若满足g(x)=-1的x有四个,则t的取值范围为( )
| A. | (-∞,-$\frac{{e}^{2}+1}{e}$) | B. | ($\frac{{e}^{2}+1}{e}$,+∞) | C. | (-$\frac{{e}^{2}+1}{e}$,-2) | D. | (2,$\frac{{e}^{2}+1}{e}$) |
17.
已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2的直线交双曲线于A,B两点,连结AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,则双曲线的离心率为( )
| A. | 5-2$\sqrt{2}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | 6-3$\sqrt{2}$ | D. | $\sqrt{6-3\sqrt{2}}$ |