题目内容

18.已知$|\overrightarrow a|$=1,$|\overrightarrow b|$=2,$\overrightarrow a$与$\overrightarrow b$的夹角为60°.求:
(1)$|\overrightarrow a+\overrightarrow b|$,$|\overrightarrow a-\overrightarrow b|$
(2)$\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角θ的值.

分析 (1)根据平面向量数量积的定义与性质,求模长即可;
(2)根据平面向量数量积求向量的夹角即可.

解答 解:(1)∵$|\overrightarrow a|$=1,$|\overrightarrow b|$=2,$\overrightarrow a$与$\overrightarrow b$的夹角为60°
∴${(\overrightarrow{a}+\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=12+2×1×2cos60°+22=7,
${(\overrightarrow{a}-\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=12-2×1×2cos60°+22=3,
∴$|\overrightarrow a+\overrightarrow b|$=$\sqrt{7}$,
$|\overrightarrow a-\overrightarrow b|$=$\sqrt{3}$;
(2)∵$\overrightarrow{b}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=$\overrightarrow{b}$•$\overrightarrow{a}$-${\overrightarrow{b}}^{2}$=2×1×cos60°-22=-3,
∴$\overrightarrow b$与$\overrightarrow a-\overrightarrow b$夹角θ的余弦值为
cosθ=$\frac{\overrightarrow{b}•(\overrightarrow{b}-\overrightarrow{a})}{|\overrightarrow{b}|×|\overrightarrow{b}-\overrightarrow{a}|}$=$\frac{-3}{2×\sqrt{3}}$=-$\frac{\sqrt{3}}{2}$,
又θ∈[0,π],
∴θ=$\frac{5π}{6}$.

点评 本题考查了平面向量的数量积与应用问题,也考查了计算能力的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网