题目内容
5.已知函数f(x)满足f(x)=1-f(2)log2x,则$f({\frac{1}{2}})$=$\frac{3}{2}$.分析 取x=2,得f(2)=1-f(2)log22,得$f(2)=\frac{1}{2}$,从而$f(x)=1-\frac{1}{2}{log_2}x$.由此能求出结果.
解答 解:∵函数f(x)满足f(x)=1-f(2)log2x,
∴取x=2,得f(2)=1-f(2)log22,
解得$f(2)=\frac{1}{2}$,
∴$f(x)=1-\frac{1}{2}{log_2}x$.
∴$f(\frac{1}{2})=1-\frac{1}{2}{log_2}\frac{1}{2}=1+\frac{1}{2}=\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题考查函数值的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
16.若幂函数f(x)=xm-1在(0,+∞)上是增函数,则( )
| A. | m>1 | B. | m<1 | C. | m=1 | D. | 不能确定 |
13.已知双曲线E$:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其一渐近线被圆C:(x-1)2+(y-3)2=9所截得的弦长等于4,则E的离心率为( )
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{5}}}{2}$或$\sqrt{3}$ | D. | $\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$ |
20.已知命题p:$?x∈({0,\frac{π}{2}}),sinx-x<0$,命题q:$?{x_0}∈({0,+∞}),{2^{x_0}}=\frac{1}{2}$,则下列命题为真命题的是( )
| A. | p∧q | B. | (¬p)∧(-q) | C. | p∧(¬q) | D. | (¬p)∧q |
10.过抛物线y2=4x的焦点F作直线l交抛物线于A,B两点,若$\frac{1}{|AF|}-\frac{1}{|BF|}$=$\frac{1}{2}$,则直线l的倾斜角θ(0<θ<$\frac{π}{2}$)等于( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2(c,0)作圆x2+y2=a2的切线,切点为M,延长F2M交抛物线y2=-4cx于点P,其中O为坐标原点,若$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{O{F_2}}+\overrightarrow{OP})$,则双曲线的离心率为( )
| A. | $\frac{4\sqrt{2}-2}{7}$ | B. | $\frac{4\sqrt{2}+2}{7}$ | C. | $\frac{1+\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{5}}{2}$ |
14.设集合A={1,2,3},B={2,4,6,8},则A∩B=( )
| A. | {2} | B. | {2,3} | C. | {1,2,3,4,6,8} | D. | {1,3} |