题目内容

1.已知F1,F2是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,|F1F2|=4,点A在双曲线的右支上,线段AF1与双曲线左支相交于点B,△F2AB的内切圆与边BF2相切于点E.若|AF2|=2|BF1|,|BE|=2$\sqrt{2}$,则双曲线C的离心率为$\sqrt{2}$.

分析 设|BF1|=m,则|AF2|=2m,由双曲线的定义可得|AF1|=2a+2m,|BF2|=m+2a,|EF2|=m+2a-2$\sqrt{2}$,再由内切圆的性质,求得a=$\sqrt{2}$,结合离心率公式,可得所求.

解答 解:设|BF1|=m,则|AF2|=2m,
由双曲线的定义有|AF1|=|AF2|+2a=2a+2m,
|BF2|=m+2a,|EF2|=m+2a-2$\sqrt{2}$,
即有2a+2m=2m-(m+2a-2$\sqrt{2}$)+2$\sqrt{2}$+m,
解得a=$\sqrt{2}$,
由c=2,可得e=$\frac{c}{a}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查双曲线的定义、方程和性质,考查内切圆的性质,考查离心率的求法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网