题目内容
9.已知等差数列{an}满足an∈N*,且前10项和S10=280,则a9的最大值为( )| A. | 29 | B. | 49 | C. | 50 | D. | 58 |
分析 由已知条件推导出a1+a10=2a1+9d=56,a1+8d=a9,由此得到7(64-a1)=9a9,从而能求出a9最大值为49.
解答 解:∵S10=5(a1+a10)=280,
∴a1+a10=2a1+9d=56,①
而a1+8d=a9,②
①×8-②×9,得:7a1=56×8-9a9,
变形:7(64-a1)=9a9,
∵an∈N*,∴a9是7的倍数,64-a1是9的倍数,
64-a1越大,a9越大.64-a1最大是63 (必须满足是7的倍数),
此时a9=49
∴a9最大值为49.
故选:B.
点评 本题考查等差数列中第9项的最大值的求法,解题时要认真审题,注意等差数列的前n项和公式的合理运用,属于中档题.
练习册系列答案
相关题目
5.已知x是x1,x2,…,x10的平均值,a1为x1,x2,x3,x4的平均值,a2为x5,x6,x10的平均值,则x=( )
| A. | $\frac{2{a}_{1}+3{a}_{2}}{5}$ | B. | $\frac{3{a}_{1}+2{a}_{2}}{5}$ | C. | a1+a2 | D. | $\frac{{a}_{1}+{a}_{2}}{2}$ |
17.若在区间[0,π]上随机取一个数x,则sinx的值落在区间($\frac{1}{2}$,1)内的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{2}{π}$ |
14.
如图,圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形,圆柱侧面积为16π,其底面直径与母线长相等,则此三棱柱的体积为( )
| A. | 6$\sqrt{3}$ | B. | 12 | C. | 12$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
18.下列函数中,在其定义域内既是奇函数又是单调递增的函数是( )
| A. | y=-$\frac{1}{x}$ | B. | y=3-x-3x | C. | y=x|x| | D. | y=x3-x |