题目内容

3.若函数f(x)=xex-m在R上存在两个不同的零点,则m的取值范围是(  )
A.m>eB.m>-$\frac{1}{e}$C.-$\frac{1}{e}$<m<0D.-e<m<0

分析 求导f′(x)=ex+xex=ex(x+1),从而判断函数的单调性及取值情况,从而解得.

解答 解:∵f(x)=x•ex-m,
∴f′(x)=ex+xex=ex(x+1),
∴当x∈(-∞,-1)时,f′(x)<0;
当x∈(-1,+∞)时,f′(x)>0;
∴f(x)在(-∞,-1)上是减函数,在(-1,+∞)上是增函数,
而$\underset{lim}{n→-∞}$f(x)=-m,f(-1)=-$\frac{1}{e}$-m,$\underset{lim}{n→∞}$f(x)=+∞;
条件转化为-m>0>-$\frac{1}{e}$-m,
故-$\frac{1}{e}$<m<0;
故选:C.

点评 本题考查了导数的综合应用及零点的判定,函数的极值的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网