题目内容
19.记f0(x)=sinx,f1(x)=f0'(x),f2(x)=f1'(x),…,fn(x)=fn-1'(x),n∈N,则f2015(x)=( )| A. | sin x | B. | -sin x | C. | cos x | D. | -cos x |
分析 由题意对函数的变化规律进行探究,发现呈周期性的变化,且其周期是4,即可得到结论.
解答 解:由题意f0(x)=sinx,
f1(x)=f0′(x)=cosx,
f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,
f4(x)=f3′(x)=sinx,
由此可知,在逐次求导的过程中,所得的函数呈周期性变化,从0开始计,周期是4,
∵2015=4×503+3,
故f2015(x)=f3(x)=-cosx
故选:D.
点评 本题考查函数的周期性,探究过程中用的是归纳推理,对其前几项进行研究得出规律,求解本题的关键一是要归纳推理的意识,一是对正、余弦函数的导数求法公式熟练掌握.
练习册系列答案
相关题目
10.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\overrightarrow{b}$=2,($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=-6,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
8.已知复数z=(2-i)2(i是虚数单位),则复数z在复平面表示的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |