题目内容
已知θ∈(
,π),且sinθ=
,则cosθ= .
| π |
| 2 |
| 1 |
| 3 |
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由θ的范围,根据sinθ的值,求出cosθ的值即可.
解答:
解:∵θ∈(
,π),sinθ=
,
∴cosθ=-
=-
,
故答案为:-
| π |
| 2 |
| 1 |
| 3 |
∴cosθ=-
| 1-sin2θ |
2
| ||
| 3 |
故答案为:-
2
| ||
| 3 |
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
α∈(π,
),cosα=-
则sin2α=( )
| 3π |
| 2 |
| ||
| 5 |
A、-
| ||
B、
| ||
C、
| ||
D、-
|
若数列{an}为等差数列,a1+a3=12,a2+a4=8,则a10等于( )
| A、17 | B、-13 |
| C、18 | D、-10 |
对于函数f(x),若?a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=
是“可构造三角形函数”,则实数t的取值范围是( )
| ex+t |
| ex+1 |
| A、[0,+∞) | ||
| B、[0,1] | ||
| C、[1,2] | ||
D、[
|
若角A,B分别为△ABC的内角,且B为锐角,满足sin(
-A)>sinB,则△ABC是( )
| π |
| 2 |
| A、锐角三角形 |
| B、直角三角形 |
| C、钝角三角形 |
| D、以上情况都有可能 |
已知集合M={x|x2>4},N={x|
<1},则M∩N等于( )
| 2 |
| x |
| A、N | B、M |
| C、{x|x>2} | D、{x|x<-2} |