题目内容

2.已知二次函数f(x)=ax2+bx(|b|≤2|a|),定义f1(x)=max{f(t)|-1≤t≤x≤1},f2(x)=min{f(t)|-1≤t≤x≤1},其中max{a,b}表示a,b中的较大者,min{a,b}表示a,b中的较小者,则下列命题正确的是(  )
A.若f1(-1)=f1(1),则f(-1)>f(1)B.若f2(-1)=f2(1),则f(-1)>f(1)
C.若f(-1)=f(1),则f2(-1)>f2(1)D.若f2(1)=f1(-1),则f1(-1)<f1(1)

分析 由新定义可知f1(-1)=f2(-1)=f(-1),f(x)在[-1,1]上的最大值为f1(1),最小值为f2(1).

解答 解:(1)若f1(-1)=f1(1),则f(-1)为f(x)在[-1,1]上的最大值,
∴f(-1)>f(1)或f(-1)=f(1).故A错误;
(2)若f2(-1)=f2(1),则f(-1)是f(x)在[-1,1]上的最小值,
∴f(-1)<f(1)或f(-1)=f(1),故B错误.
(3)若f(-1)=f(1),则f(x)关于y轴对称,
∴当a>0时,f2(1)=f(0)≠f(-1)=f2(-1),故C错误.
(4)若f2(1)=f1(-1),则f(-1)为f(x)在[-1,1]上的最小值,
而f1(-1)=f(-1),f1(1)表示f(x)在[-1,1]上的最大值,
∴f1(-1)<f1(1).故D正确.
故选:D.

点评 本题考查了对于新定义的理解和二次函数的图象与性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网