题目内容

1.电视剧《人民的名义》中有一个低矮的接待上访服务窗口,假设群众办理业务所需的时间互相独立,且都是10分钟的整数倍,对以往群众办理业务所需的时间统计结果如下:
办理业务所需的时间(分)1020304050
频率0.30.30.20.10.1
假设排队等待办理业务的群众不少于3人,从第一个群众开始办理业务时开始计时.
(Ⅰ)估计第三个群众恰好等待40分钟开始办理业务的概率;
(Ⅱ)X表示至第20分钟末已办理完业务的群众人数,求X的分布列及数学期望.

分析 (Ⅰ)设Y表示顾客办理业务所需的时间,用频率估计概率,求出Y的分布列,A表示事件“第三个顾客恰好等待40分钟开始办理业务”,则事件A对应三种情形:①第一个顾客办理业务所需的时间为10分钟,且第二个顾客办理业务所需的时间为30分钟;②第一个顾客办理业务所需的时间为30分钟,且第二个顾客办理业务所需的时间为10分钟;③第一个和第二个顾客办理业务所需的时间均为20分钟.由此能求出第三个群众恰好等待40分钟开始办理业务的概率.
(Ⅱ)X所有可能的取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:

Y1020304050
P0.30.30.20.10.1
(Ⅰ)A表示事件“第三个顾客恰好等待40分钟开始办理业务”,则事件A对应三种情形:
①第一个顾客办理业务所需的时间为10分钟,且第二个顾客办理业务所需的时间为30分钟;②第一个顾客办理业务所需的时间为30分钟,且第二个顾客办理业务所需的时间为10分钟;③第一个和第二个顾客办理业务所需的时间均为20分钟.
…(3分)
所以P(A)=P(Y=10)P(Y=30)+P(Y=30)P(Y=10)+P(Y=20)P(Y=20)=0.3×0.2+0.2×0.3+0.3×0.3=0.21.…(5分)
(Ⅱ)X所有可能的取值为0,1,2.…(6分)X=0对应第一个顾客办理业务所需的时间超过20分钟,
所以P(X=0)=P(Y>0)=0.4;X=1对应第一个顾客办理业务所需的时间为10分钟且第二个顾客办理业务所需的时   间超过10分钟,或第一个顾客办理业务所需的时间为20分钟,
所以P(X=1)=P(Y=10)P(Y>10)+P(Y=20)=0.3×0.7+0.3=0.51;X=2对应两个顾客办理业务所需的时间均为10分钟,
所以P(X=2)=P(Y=10)P(Y=10)=0.3×0.3=0.09; …(9分)
所以X的分布列为
X012
P0.40.510.09
E(X)=0×0.4+1×0.51+2×0.09=0.69…(12分)
(注:分布列未列表,扣1分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查了n次独立试验中事件A恰好发生k次的概率计算公式,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网