题目内容

18.已知a>0,不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,可推广为$x+\frac{a}{x^n}≥n+1$,则a=nn

分析 由已知中不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,归纳不等式两边各项的变化规律,可得答案.

解答 解:由已知中不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,
归纳可得:不等式左边第一项为x.第二项为$\frac{{n}^{n}}{{x}^{n}}$,右边为n+1,
故第n个不等式为:x+$\frac{{n}^{n}}{{x}^{n}}$≥n+1,
∴a=nn
故答案为nn

点评 本题考查了归纳推理,根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网