题目内容

已知函数f(x)=
3
sinωxcosωx-cos2ωx-
1
2
(ω>0,x∈R)的图象上相邻两个最高点的距离为π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=
7
,f(C)=0,sinB=3sinA,求a,b的值.
考点:余弦定理,两角和与差的正弦函数,正弦函数的单调性
专题:解三角形
分析:(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据题意确定出ω的值,确定出f(x)解析式,利用正弦函数的单调性求出函数f(x)的单调递增区间即可;
(Ⅱ)由f(C)=0,求出C的度数,利用正弦定理化简sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a与b的值即可.
解答: 解:f(x)=
3
2
sin2ωx-
1
2
(1+cos2ωx)-
1
2
=sin(2ωx-
π
6
)-1,
∵f(x)图象上相邻两个最高点的距离为π,
=π,即ω=1,
则f(x)=sin(2x-
π
6
)-1,
(Ⅰ)令-
π
2
+2kπ≤2x-
π
6
π
2
+2kπ,k∈Z,得到-
π
6
+kπ≤x≤kπ+
π
3
,k∈Z,
则函数f(x)的单调递增区间为[-
π
6
+kπ,kπ+
π
3
],k∈Z;
(Ⅱ)由f(C)=0,得到f(C)=sin(2C-
π
6
)-1=0,即sin(2x-
π
6
)=1,
∴2C-
π
6
=
π
2
,即C=
π
3

由正弦定理
a
sinA
=
b
sinB
得:b=
asinB
sinA

把sinB=3sinA代入得:b=3a,
由余弦定理及c=
7
得:cosC=
a2+b2-c2
2ab
=
a2+9a2-7
6a2
=
1
2

整理得:10a2-7=3a2
解得:a=1,
则b=3.
点评:此题考查了正弦、余弦定理,以及二倍角的正弦、余弦函数公式,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网