题目内容

已知f(x)=
x2-2tx+t2,x≤0
x+
1
x
+t,x>0
,若f(0)是f(x)的最小值,则t的取值范围为(  )
A、[-1,2]
B、[-1,0]
C、[1,2]
D、[0,2]
考点:分段函数的应用
专题:函数的性质及应用
分析:法1:利用排除法进行判断,
法2:根据二次函数的图象以及基本不等式的性质即可得到结论.
解答: 解:法一:排除法.
当t=0时,结论成立,排除C;
当t=-1时,f(0)不是最小值,排除A、B,选D.
法二:直接法.
由于当x>0时,f(x)=x+
1
x
+t在x=1时取得最小值为2+t,
由题意当x≤0时,f(x)=(x-t)2
若t≥0,此时最小值为f(0)=t2
故t2≤t+2,
即t2-t-2≤0,解得-1≤t≤2,此时0≤t≤2,
若t<0,则f(t)<f(0),条件不成立,
选D.
点评:本题主要考查函数最值的应用,根据分段函数的性质,结合二次函数的图象和性质是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网