题目内容
用错位相减法求bn=n2×2n的前n项和.
考点:数列的求和
专题:等差数列与等比数列
分析:两次运用错位相减法即可求得bn=n2×2n的前n项和.
解答:
解:由bn=n2×2n,
则其前n项和为Sn=12×21+22×22+32×23+…+n2×2n ①,
2Sn=12×22+22×23+…+(n-1)2×2n+n2×2n+1 ②,
①-②得:
-Sn=1×21+3×22+5×23+…+(2n-1)×2n-n2×2n+1.
再令Tn=1×21+3×22+5×23+…+(2n-1)×2n ③,
2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1 ④,
③-④得:-Tn=2+23+24+…+2n+1-(2n-1)×2n+1
=2+
-(2n-1)×2n+1=2n+2-(2n-1)×2n+1-6,
∴Tn=6+(2n-1)×2n+1-2n+2.
则-Sn=6+(2n-1)×2n+1-2n+2-n2×2n+1=6-(n-1)2×2n+1-2n+2.
∴Sn=(n-1)2×2n+1+2n+2-6.
则其前n项和为Sn=12×21+22×22+32×23+…+n2×2n ①,
2Sn=12×22+22×23+…+(n-1)2×2n+n2×2n+1 ②,
①-②得:
-Sn=1×21+3×22+5×23+…+(2n-1)×2n-n2×2n+1.
再令Tn=1×21+3×22+5×23+…+(2n-1)×2n ③,
2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1 ④,
③-④得:-Tn=2+23+24+…+2n+1-(2n-1)×2n+1
=2+
| 8(1-2n-1) |
| 1-2 |
∴Tn=6+(2n-1)×2n+1-2n+2.
则-Sn=6+(2n-1)×2n+1-2n+2-n2×2n+1=6-(n-1)2×2n+1-2n+2.
∴Sn=(n-1)2×2n+1+2n+2-6.
点评:本题考查了错位相减法求数列的和,考查了学生的计算能力,是中档题.
练习册系列答案
相关题目
当函数y=x•2x取极小值时,x=( )
A、
| ||
B、-
| ||
| C、-ln2 | ||
| D、ln2 |