题目内容
17.圆(x-1)2+(y-2)2=1上的动点P到直线3x-4y-10=0的距离的最小值为( )| A. | 2 | B. | 1 | C. | 3 | D. | 4 |
分析 利用点到直线的距离公式求出圆心(1,2)到直线l的距离d和半径,则d减去半径即为所求.
解答 解:圆心(1,2)到直线l的距离为d=$\frac{|3×1-4×2-10|}{\sqrt{{3}^{2}+(-4)^{2}}}$=3,而圆的半径为1,
故点P到直线l的距离的最小值为3-1=2
故选:A
点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.
练习册系列答案
相关题目
7.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,分数在80以上(含80)的同学获奖,按文理科用分层抽样的方法共抽取200人的成绩作为样本,得到成绩的2×2列联表.
(1)填写下面的2×2列联表,问能否有超过95%的把握认为“获奖与学生的文理科有关”?
(2)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.
附表及公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(1)填写下面的2×2列联表,问能否有超过95%的把握认为“获奖与学生的文理科有关”?
(2)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.
| 文科生 | 理科生 | 合计 | |
| 获奖 | 5 | ||
| 不获奖 | 115 | ||
| 合计 | 200 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
8.设A为某圆周上一定点,在圆周上任取一点P,则弦长|AP|超过半径的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{π}$ | D. | 1-$\frac{1}{π}$ |
12.为了得到函数y=$\sqrt{3}$sin3x+cos3x的图象,可以将函数y=2sin3x的图象( )
| A. | 向右平移$\frac{π}{6}$个单位 | B. | 向左平移$\frac{π}{6}$个单位 | ||
| C. | 向右平移$\frac{π}{18}$个单位 | D. | 向左平移$\frac{π}{18}$个单位 |
9.与直线x-2y+6=0平行且过点(0,-1)的直线方程为( )
| A. | 2x+y+1=0 | B. | x+2y+2=0 | C. | x-2y-2=0 | D. | 2x-y-1=0 |
6.执行如图所示的程序框图,输出的S值为( )

| A. | $\frac{1}{4}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{14}$ |
4.在平行四边形ABCD中,E为BC的中点,F为DC的中点,若$\overrightarrow{AC}$=$λ\overrightarrow{AE}$+$μ\overrightarrow{BF}$,则λ+μ的值为( )
| A. | $\frac{4}{5}$ | B. | 1 | C. | $\frac{8}{5}$ | D. | 2 |