题目内容

14.若2sin2α+sin2β-2sinα=0,则cos2α+cos2β的取值范围为[1,2].

分析 根据已知等式,得到sin2β=-2sin2α+2sinα≥0,可以解出sinα的取值范围是[0,1],并且cos2β=1-sin2β=2sin2α-2sinα+1,结合cos2α=1-sin2α,代入cos2α+cos2β得关于sinα的二次函数:y═(sinα-1)2+1,其中sinα∈[0,1],由此能求出cos2α+cos2β的取值范围.

解答 解:∵2sin2α+sin2β-2sinα=0,
∴sin2β=-2sin2α+2sinα≥0,
可得0≤sinα≤1,cos2β=1-sin2β=2sin2α-2sinα+1
∴cos2α+cos2β=(1-sin2α)+(2sin2α-2sinα+1)
=2-2sinα+sin2α=(sinα-1)2+1.
∵0≤sinα≤1,
∴当sinα=0时,cos2α+cos2β有最大值为2,
当sinα=1时,cos2α+cos2β有最小值1.
∴1≤cos2α+cos2β≤2.
∴cos2α+cos2β的取值范围为[1,2].
故答案为:[1,2].

点评 本题考查两角余弦值平方和的取值范围的求法,是中档题,解题时要认真审题,注意同角三角函数关系式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网