题目内容

设数列{an}的前n项和为Sn,满足Sn=2nan+1-3n2-4n,n∈N*,且S3=15.
(1)求a1,a2,a3的值;
(2)求数列{an}的通项公式.
考点:数列递推式,数列的函数特性
专题:点列、递归数列与数学归纳法
分析:(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2
(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.
解答: 解:(1)由Sn=2nan+1-3n2-4n,n∈N*,得:
S2=4a3-20  ①
又S3=S2+a3=15  ②
联立①②解得:a3=7.
再在Sn=2nan+1-3n2-4n中取n=1,得:
a1=2a2-7  ③
又S3=a1+a2+7=15  ④
联立③④得:a2=5,a1=3.
∴a1,a2,a3的值分别为3,5,7;
(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.
由此猜测an=2n+1.
下面由数学归纳法证明:
1、当n=1时,a1=3=2×1+1成立.
2、假设n=k时结论成立,即ak=2k+1.
那么,当n=k+1时,
由Sn=2nan+1-3n2-4n,得Sk=2kak+1-3k2-4k
Sk+1=2(k+1)ak+2-3(k+1)2-4(k+1)
两式作差得:ak+2=
2k+1
2k+2
ak+1+
6k+7
2k+2

ak+1=
2k-1
2k
ak+
6k+1
2k

=
2k-1
2k
•(2k+1)+
6k+1
2k
=
4k2-1+6k+1
2k
=2(k+1)+1.
综上,当n=k+1时结论成立.
∴an=2n+1.
点评:本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网