题目内容

9.已知等比数列{an}中,a1=3,a4=24,
(1)求数列{an}的通项公式;
(2)设等差数列{bn}中,b2=a2,b9=a5,求数列{bn}的前n项和Sn

分析 (1)利用等比数列的通项公式即可得出.
(2)利用等差数列的通项公式与求和公式即可得出.

解答 解:(1)设等比数列的公比为q,由已知,得24=3q3,解得q=2,
∴${a_n}={a_1}•{q^{n-1}}=3•{2^{n-1}}$.
(2)由(1)得a2=6,a5=48,
∴b2=6,b9=48.
设等差数列{bn}的公差为d,则$\left\{\begin{array}{l}{b_1}+d=6\\{b_1}+8d=48\end{array}\right.$
解得$\left\{\begin{array}{l}{b_1}=0\\ d=6\end{array}\right.$,
∴${S_n}=n{b_1}+\frac{n(n-1)}{2}d=3{n^2}-3n$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网