题目内容

12.双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$
(1)点A1(-a,0),A2(a,0),动点P在E上,作A1Q⊥A1P,A2Q⊥A2P,求点Q的轨迹方程;
(2)点M(x0,y0),N(-x0,-y0)为E上的定点,点P为E上的动点,作MP⊥MQ,NP⊥NQ,求Q的轨迹方程.

分析 (1)设P(x0,y0)(x≠±a),Q(x,y).由条件$\left\{\begin{array}{l}{\frac{y}{x+a}•\frac{{y}_{0}}{{x}_{0}+a}=-1}\\{\frac{y}{x-a}•\frac{{y}_{0}}{{x}_{0}-a}=-1}\end{array}\right.$,解得x0,y0,代入双曲线化简即可得出.
(2)设Q(x,y),P(x1,y1),则$\frac{{x}_{1}^{2}}{{a}^{2}}$-$\frac{{y}_{1}^{2}}{{b}^{2}}$=1,$\frac{{x}_{0}^{2}}{{a}^{2}}-\frac{{y}_{0}^{2}}{{b}^{2}}$=1.可得$\frac{{x}_{1}^{2}-{x}_{0}^{2}}{{a}^{2}}$=$\frac{{y}_{1}^{2}-{y}_{0}^{2}}{{b}^{2}}$.根据MP⊥MQ,NP⊥NQ,可得$\overrightarrow{MP}•\overrightarrow{MQ}$=(x1-x0)(x-x0)+(y1-y0)(y-y0)=0,$\overrightarrow{NP}•\overrightarrow{NQ}$=(x1+x0)(x+x0)+(y1+y0)(y+y0)=0,于是$({x}_{1}^{2}-{x}_{0}^{2})$$({x}^{2}-{x}_{0}^{2})$+$({y}_{1}^{2}-{y}_{0}^{2})$$({y}^{2}-{y}_{0}^{2})$=0,即可得出根据方程.

解答 解:(1)设P(x0,y0)(x≠±a),Q(x,y).
∵A1(-a,0),A2(a,0).
由条件$\left\{\begin{array}{l}{\frac{y}{x+a}•\frac{{y}_{0}}{{x}_{0}+a}=-1}\\{\frac{y}{x-a}•\frac{{y}_{0}}{{x}_{0}-a}=-1}\end{array}\right.$,则$\left\{\begin{array}{l}{{x}_{0}=-x(x≠±a)}\\{{y}_{0}=\frac{{x}^{2}-{a}^{2}}{y}}\end{array}\right.$,
而点P(x0,y0)在双曲线上,∴b2x02-a2y02=a2b2
即b2(-x2)-a2($\frac{{x}^{2}-{a}^{2}}{y}$)2=a2b2
化简得Q点的轨迹方程为:a2x2-b2y2=a4(x≠±a).
(2)设Q(x,y),P(x1,y1),则$\frac{{x}_{1}^{2}}{{a}^{2}}$-$\frac{{y}_{1}^{2}}{{b}^{2}}$=1,$\frac{{x}_{0}^{2}}{{a}^{2}}-\frac{{y}_{0}^{2}}{{b}^{2}}$=1.
∴$\frac{{x}_{1}^{2}-{x}_{0}^{2}}{{a}^{2}}$=$\frac{{y}_{1}^{2}-{y}_{0}^{2}}{{b}^{2}}$(*)
∵MP⊥MQ,NP⊥NQ,
∴$\overrightarrow{MP}•\overrightarrow{MQ}$=(x1-x0)(x-x0)+(y1-y0)(y-y0)=0,
$\overrightarrow{NP}•\overrightarrow{NQ}$=(x1+x0)(x+x0)+(y1+y0)(y+y0)=0,
∴$({x}_{1}^{2}-{x}_{0}^{2})$$({x}^{2}-{x}_{0}^{2})$+$({y}_{1}^{2}-{y}_{0}^{2})$$({y}^{2}-{y}_{0}^{2})$=0,(**)
把(*)代入(**)可得:a2x2-b2y2=${a}^{2}{x}_{0}^{2}$-${b}^{2}{y}_{0}^{2}$.

点评 本题考查了求轨迹方程的方法、数量积于是性质、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网