题目内容
设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an;
(2)若数列{an}为等差数列,且A=1,C=-2.
①求an;
②设bn=
,且数列{bn}的前n项和为Tn,求T60的值.
(1)当A=B=0,C=1时,求an;
(2)若数列{an}为等差数列,且A=1,C=-2.
①求an;
②设bn=
| 1 | ||||
an
|
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由题意得an=
an-1,由此求出an=
(
)n-1.
(2)①数列{an}为等差数列,由通项公式与求和公式,得an=2n-1.
②bn=
(
-
),利用裂项求和法能求出T60的值.
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
(2)①数列{an}为等差数列,由通项公式与求和公式,得an=2n-1.
②bn=
| 1 |
| 2 |
| 1 | ||
|
| 1 | ||
|
解答:
解:(1)由题意得,2an+Sn=1,
∴2an-1+Sn-1=1(n≥2),
两式相减,得an=
an-1,…(3分)
又当n=1时,有3a1=1,即a1=
,
∴数列{an}为等比数列,
∴an=
(
)n-1.…(5分)
(2)①∵数列{an}为等差数列,
由通项公式与求和公式,得:
2an+Sn=2a1+2(n-1)d+
n2+(a1-
)n=
n2+(a1+
)n+2a1-2d,
∵A=1,C=-2,∴
=1,a1-d=-2,
∴d=2,a1=1,∴an=2n-1.(10分)
②bn=
=
=
=
=
=
(
-
)…(13分)
则Tn=
(
-
+
-
+…+
-
)=
(1-
),
∴T60=
(
--
)=
(1-
)=
…(16分)
∴2an-1+Sn-1=1(n≥2),
两式相减,得an=
| 2 |
| 3 |
又当n=1时,有3a1=1,即a1=
| 1 |
| 3 |
∴数列{an}为等比数列,
∴an=
| 1 |
| 3 |
| 2 |
| 3 |
(2)①∵数列{an}为等差数列,
由通项公式与求和公式,得:
2an+Sn=2a1+2(n-1)d+
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
| 3d |
| 2 |
∵A=1,C=-2,∴
| d |
| 2 |
∴d=2,a1=1,∴an=2n-1.(10分)
②bn=
| 1 | ||||
an
|
=
| 1 | ||||
(2n-1)
|
=
| 1 | ||||||||
|
=
| ||||||||||||
|
=
| ||||
2
|
=
| 1 |
| 2 |
| 1 | ||
|
| 1 | ||
|
则Tn=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2 |
| 1 | ||
|
∴T60=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 | ||
|
| 1 |
| 2 |
| 1 |
| 11 |
| 5 |
| 11 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目