题目内容

12.用数学归纳法证明:1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n>1,n∈N*),在第二步证明从n=k到n=k+1成立时,左边增加的项数是$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.

分析 分别把n=k和n=k+1代入不等式左边,比较两式即可得出结论.

解答 解:n=k时,不等式左边为1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$,
当n=k+1时,不等式左边为1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$,
故增加的项为:$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.
故答案为:$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.

点评 本题考查了数学归纳法的步骤,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网