题目内容
20.已知数列{an}的前n项和为Sn,满足a1=2,Sn+2=2an,n∈N*(1)求an;
(2)求证:$\frac{a_1}{{({{a_1}+1})({{a_2}+1})}}+\frac{a_2}{{({{a_2}+1})({{a_3}+1})}}+…+\frac{a_n}{{({{a_n}+1})({{a_{n+1}}+1})}}<\frac{1}{3}$.
分析 (1)通过Sn+2=2an与Sn-1+2=2an-1(n≥2)作差整理的an=2an-1(n≥2),进而可知数列{an}是首项、公比为2的等比数列,计算即得结论;
(2)通过(1)裂项可知$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,进而并项相加即得结论.
解答 (1)解:∵Sn+2=2an,
∴Sn-1+2=2an-1(n≥2),
两式相减得:an=2an-2an-1,
整理得:an=2an-1(n≥2),
又∵a1=2,
∴数列{an}是首项、公比为2的等比数列,
∴an=2n;
(2)证明:由(1)可知$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,
∴$\frac{{a}_{1}}{({a}_{1}+1)({a}_{2}+1)}$+$\frac{{a}_{2}}{({a}_{2}+1)({a}_{3}+1)}$+…+$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$
=$\frac{1}{2+1}$-$\frac{1}{{2}^{2}+1}$+$\frac{1}{{2}^{2}+1}$-$\frac{1}{{2}^{3}+1}$+…+$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$
=$\frac{1}{2+1}$-$\frac{1}{{2}^{n+1}+1}$
=$\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$
<$\frac{1}{3}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
| A. | 2$\sqrt{2}$ | B. | 2 | C. | 3 | D. | 4 |
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
| A. | 若m∥n,n?α,则m∥α | B. | 若m∥α,n?α,则m∥n | C. | 若m⊥n,n?α,则m⊥α | D. | 若m⊥α,m∥n,则n⊥α |