题目内容

11.如图,在锐角三角形ABC中,∠A=$\frac{π}{4}$,AC=$\sqrt{3}$,BC=$\sqrt{2}$,BD=$\frac{3\sqrt{2}}{5}$;
(1)求∠ABC;
(2)求CD的长度;
(3)求sinD.

分析 (1)由题意和正弦定理可得sin∠ABC=$\frac{ACsinA}{BC}$,代值计算可得;
(2)由(1)可得∠CBD=120°,在△BCD中由余弦定理可得;
(3)由正弦定理可得sinD=$\frac{BCsin∠CBD}{CD}$,代值计算可得.

解答 解:(1)由题意和正弦定理可得:
sin∠ABC=$\frac{ACsinA}{BC}$=$\frac{\sqrt{3}×\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{\sqrt{3}}{2}$,
在锐角三角形ABC中,∠ABC=60°;
(2)由(1)可得∠CBD=180°-∠ABC=120°,
∴在△BCD中由余弦定理可得CD2=BC2+BD2-2BC•BD•cos∠CBD
=2+$\frac{18}{25}$-2×$\sqrt{2}$×$\frac{3\sqrt{2}}{5}$×(-$\frac{1}{2}$)=$\frac{98}{25}$,故CD=$\frac{7\sqrt{2}}{5}$;
(3)由正弦定理可得sinD=$\frac{BCsin∠CBD}{CD}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\frac{7\sqrt{2}}{5}}$=$\frac{5\sqrt{3}}{14}$

点评 本题考查正弦定理解三角形,涉及余弦定理求边的长度,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网