题目内容
若为偶函数,且当时,,则不等式的解集为( )
A. B. C. D.
函数在最大值是( )
A.-25 B.7 C.0 D.-20
函数的定义域和值域都是[0,1],( )
A.1 B.2ICTURE "http://www.ks5u.com/../../../../AppData/Local/Temp/ksohtml/wps4CE.tmp.png" \* MERGEFORMATINET C.3 D.4
在平面四边形中,,则的最大值为 __ .
把周长为1的圆的圆心放在轴,顶点,一动点从开始逆时针绕圆运动一周,记走过的弧长,直线与轴交于点,则函数的大致图像为( )
已知函数f(x)=lnx-ax2+(2-a)x.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<时,f(+x)>f(-x);
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.
用火柴棒按下图的方法搭三角形:
按图示的规律搭下去,则所用火柴棒数与所搭三角形的个数之间的关系式可以是 .
某中学生心理咨询中心服务电话接通率为,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,
求(1)他们中成功咨询的人数为X的分布列及期望;
(2)至少一人拨通电话的概率.
已知曲线上的任意点到点的距离比它到直线的距离小1,
(1)求曲线的方程;
(2)点的坐标为,若为曲线上的动点,求的最小值
(3)设点为轴上异于原点的任意一点,过点作曲线的切线,直线分别与直线及轴交于,以为直径作圆,过点作圆的切线,切点为,试探究:当点在轴上运动(点与原点不重合)时,线段的长度是否发生变化?请证明你的结论